Bus buffer/line driver; 3-state Rev. 07 — 17 June 2009

Product data sheet

General description 1.

74AHC1G126 and 74AHCT1G126 are high-speed Si-gate CMOS devices. They provide one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input pin (OE). A LOW at pin OE causes the output to assume a high-impedance OFF-state.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

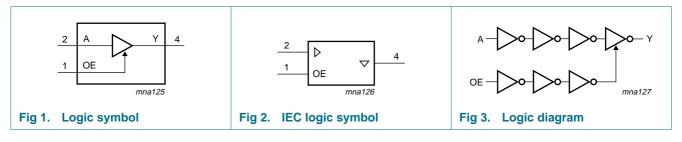
Features 2.

- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- Multiple package options
- ESD protection:
 - HBM JESD22-A114E: exceeds 2000 V
 - MM JESD22-A115-A: exceeds 200 V
 - CDM JESD22-C101C: exceeds 1000 V
- Specified from –40 °C to +125 °C

Ordering information 3.

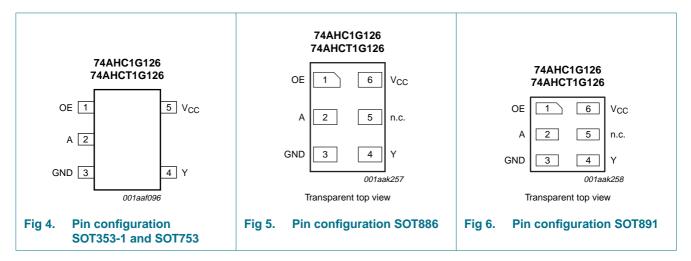
Table 1. **Ordering information**

Type number	Package									
	Temperature range	Name	Description	Version						
74AHC1G126GW	–40 °C to +125 °C	TSSOP5 plastic thin shrink small outline package; 5 leads;	SOT353-1							
74AHCT1G126GW			body width 1.25 mm							
74AHC1G126GV	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753						
74AHCT1G126GV										
74AHC1G126GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no	SOT886						
74AHCT1G126GM			leads; 6 terminals; body $1 \times 1.45 \times 0.5$ mm							
74AHC1G126GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package;	SOT891						
74AHCT1G126GF			no leads; 6 terminals; body $1 \times 1 \times 0.5$ mm							


Bus buffer/line driver; 3-state

4. Marking

Table 2. Marking codes	
Type number	Marking ^[1]
74AHC1G126GW	AN
74AHCT1G126GW	CN
74AHC1G126GV	A26
74AHCT1G126GV	C26
74AHC1G126GM	AN
74AHCT1G126GM	CN
74AHC1G126GF	AN
74AHCT1G126GF	CN


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

74AHC_AHCT1G126_7

Bus buffer/line driver; 3-state

6.2 Pin description

Table 3.PiSymbol	n description Pin		Description
-	SOT353-1/SOT753	SOT886/SOT891	
OE	1	1	output enable input
A	2	2	data input A
GND	3	3	ground (0 V)
Y	4	4	data output Y
n.c.	-	5	not connected
V _{CC}	5	6	supply voltage

7. Functional description

Table 4.Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state

Input OE	Output	
OE	A	Y
н	L	L
н	Н	Н
L	Х	Z

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or V_{\rm O} > V _{CC} + 0.5 V	<u>[1]</u> _	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$	[2] _	250	mW
,					

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Bus buffer/line driver; 3-state

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter Conditions		74	AHC1G	126	74	Unit		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	-	-	-	ns/V
	and fall rate	$V_{CC}=5.0~V\pm0.5~V$	-	-	20	-	-	20	ns/V

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	to +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC1	G126									
VIH	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 3.0 V$	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	-	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 3.0 V$	-	-	0.9	-	0.9	-	0.9	V
		$V_{CC} = 5.5 V$	-	-	1.65	-	1.65	-	1.65	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$								
		I_{O} = –50 $\mu A;$ V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I_O = –50 $\mu A; V_{CC}$ = 3.0 V	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = –4.0 mA; V_{CC} = 3.0 V	2.58	-	-	2.48	-	2.40	-	V
		I_{O} = –8.0 mA; V_{CC} = 4.5 V	3.94	-	-	3.8	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	I_O = 50 $\mu A; V_{CC}$ = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_O = 50 $\mu A; V_{CC}$ = 3.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_O = 50 $\mu A; V_{CC}$ = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.36	-	0.44	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V
l _{oz}	OFF-state output current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{IH} \text{ or } V_{IL}; \ V_{O} = V_{CC} \text{ or} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-	-	±0.25	-	±2.5	-	±10	μA
I	input leakage current	$V_I = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	2.0	-	20	-	40	μΑ

Bus buffer/line driver; 3-state

Symbol	Parameter	Conditions		25 °C		−40 °C 1	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	1
CI	input capacitance		-	3	10	-	10	-	10	pF
74AHCT	1G126									
VIH	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.8	-	3.70	-	V
V _{OL}		V_{I} = V_{IH} or $V_{\text{IL}};$ V_{CC} = 4.5 V								
	output voltage	l _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		l _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or}$ GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.25	-	±2.5	-	±10	μΑ
l _l	input leakage current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current		-	-	2.0	-	20	-	40	μΑ
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND; $I_O = 0 A$; $V_{CC} = 4.5 V$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
CI	input capacitance		-	3	10	-	10	-	10	pF

Table 7. Static characteristics ... continued Voltages are referenced to GND (around = 0.V)

11. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V; For test circuit see Figure 9.

Symbol	Parameter	Conditions			Conditions		25 °C		−40 °C	to +85 °C	_40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max			
74AHC1G126													
t _{pd}	t _{pd} propagation delay	A to Y; see Figure 7	<u>[1]</u>										
		V_{CC} = 3.0 V to 3.6 V	[2]										
		C _L = 15 pF		-	4.4	8.0	1.0	9.5	1.0	10.0	ns		
		$C_L = 50 \text{ pF}$		-	6.3	11.5	1.0	13.0	1.0	14.5	ns		
		V_{CC} = 4.5 V to 5.5 V	[3]										
		C _L = 15 pF		-	3.4	5.5	1.0	6.5	1.0	7.0	ns		
		C _L = 50 pF		-	4.7	7.5	1.0	8.5	1.0	9.5	ns		

Bus buffer/line driver; 3-state

Symbol	Parameter	Conditions	Conditions		25 °C		−40 °C t	to +85 °C	–40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
en	enable time	OE to Y; see Figure 8	<u>[1]</u>								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		C _L = 15 pF		-	4.9	8.0	1.0	9.5	1.0	10.0	ns
		C _L = 50 pF		-	7.0	11.5	1.0	13.0	1.0	14.5	ns
		V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF		-	3.6	5.6	1.0	6.3	1.0	7.0	ns
		C _L = 50 pF		-	5.4	8.0	1.0	9.0	1.0	9.5	ns
dis	disable time	OE to Y; see Figure 8	<u>[1]</u>								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		C _L = 15 pF		-	6.3	9.7	1.0	11.5	1.0	12.5	ns
		C _L = 50 pF		-	9.0	13.2	1.0	15.0	1.0	16.5	ns
		V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF		-	4.3	6.8	1.0	8.0	1.0	8.5	ns
		C _L = 50 pF		-	6.1	8.8	1.0	10.0	1.0	11.0	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	9	-	-	-	-	-	pF
74АНСТ	1G126										
pd	propagation	A to Y; see Figure 7	[1]								
	delay	V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF		-	3.4	5.5	1.0	6.5	1.0	7.0	ns
		C _L = 50 pF		-	4.7	7.5	1.0	8.5	1.0	9.5	ns
en	enable time	OE to Y; see Figure 8	<u>[1]</u>								
		V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF		-	3.4	5.6	1.0	6.3	1.0	6.5	ns
		C _L = 50 pF		-	4.8	8.0	1.0	9.0	1.0	9.0	ns
dis	disable time	OE to Y; see Figure 8	<u>[1]</u>								
		V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF			4.0	6.8	1.0	8.0	1.0	8.5	ns
		$C_{1} = 50 \text{ pF}$			5.7	8.8	1.0	10.0	1.0	11.5	ns

Table 8. Dynamic characteristics ... continued GND = 0.V: For test circuit see Figure 9.

Bus buffer/line driver; 3-state

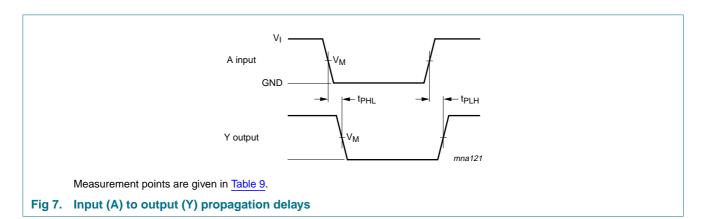
Symbol Parameter	Conditions		25 °C			–40 °C to +85 °C		−40 °C to +125 °C		Uni	
				Min	Тур	Max	Min	Max	Min	Max	
C _{PD}		per buffer; $C_L = 50 \text{ pF}; f = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	11	-	-	-	-	-	pF

Table 8. Dynamic characteristics ... continued

t_{en} is the same as t_{PLL} and t_{PLL}. t_{dis} is the same as t_{PLL} and t_{PLL}.

- t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [2] Typical values are measured at V_{CC} = 3.3 V.
- [3] Typical values are measured at V_{CC} = 5.0 V.
- [4] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).

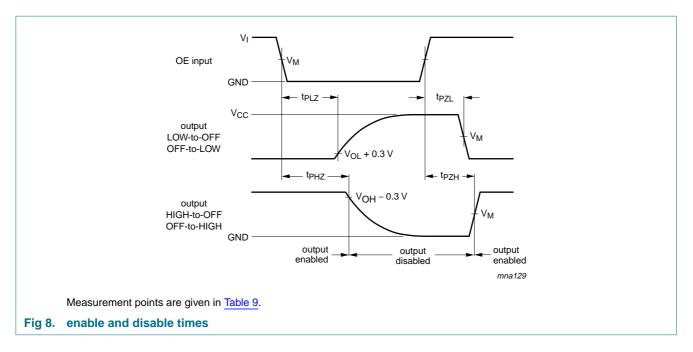
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$


 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

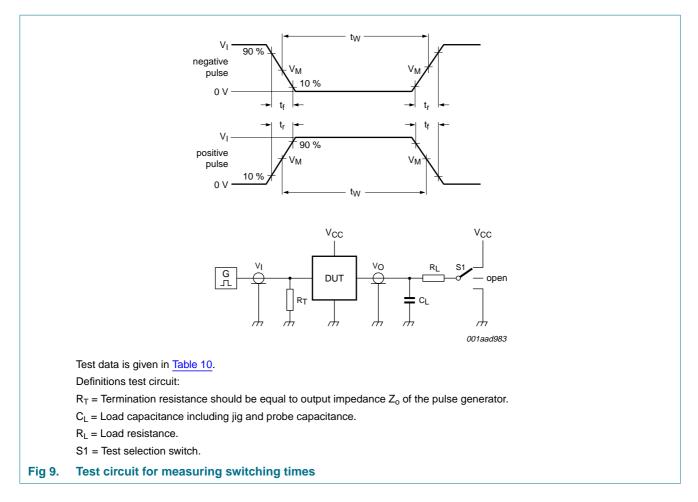
V_{CC} = supply voltage in Volts.


12. Waveforms

NXP Semiconductors

74AHC1G126; 74AHCT1G126

Bus buffer/line driver; 3-state


Table 9.Measurement points

Туре	Input	Output	
	V _M	VI	V _M
74AHC1G126	$0.5 imes V_{CC}$	GND to V _{CC}	$0.5 \times V_{CC}$
74AHCT1G126	1.5 V	GND to 3.0 V	$0.5 \times V_{CC}$

NXP Semiconductors

74AHC1G126; 74AHCT1G126

Bus buffer/line driver; 3-state

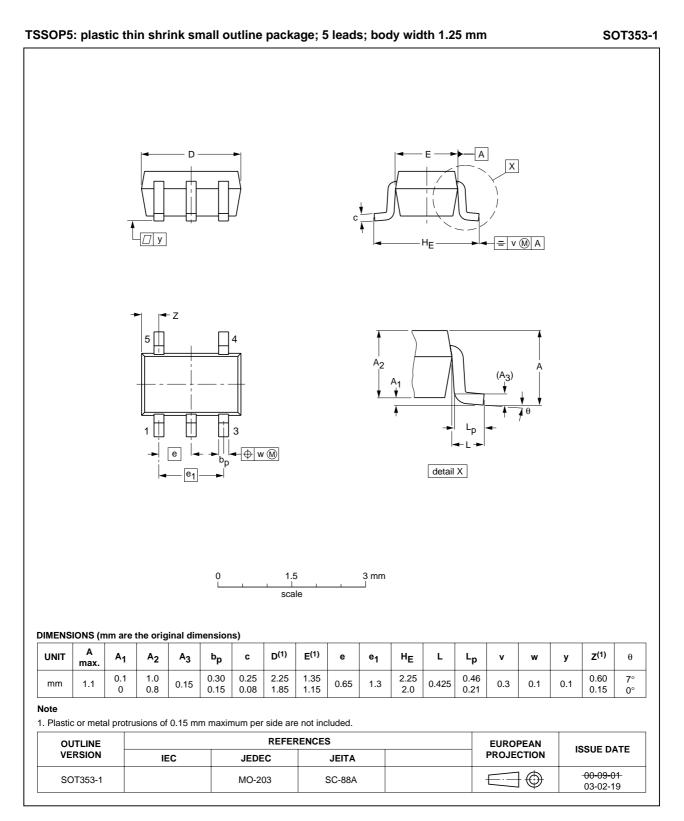


Table 10. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74AHC1G126	V _{CC}	≤ 3 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74AHCT1G126	3 V	≤ 3 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

Bus buffer/line driver; 3-state

13. Package outline

Fig 10. Package outline SOT353-1 (TSSOP5)

Bus buffer/line driver; 3-state

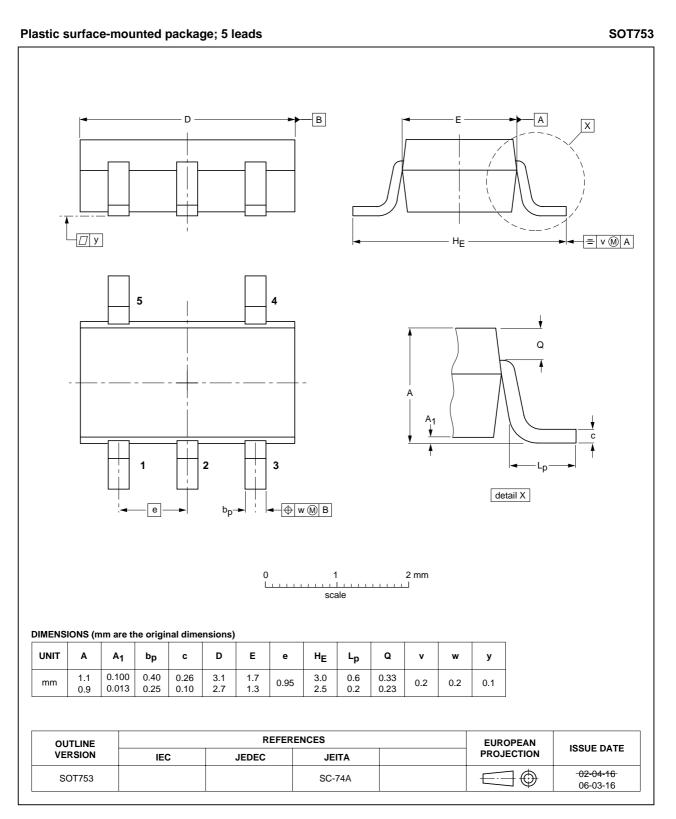


Fig 11. Package outline SOT753 (SC-74A)

© NXP B.V. 2009. All rights reserved.

Bus buffer/line driver; 3-state

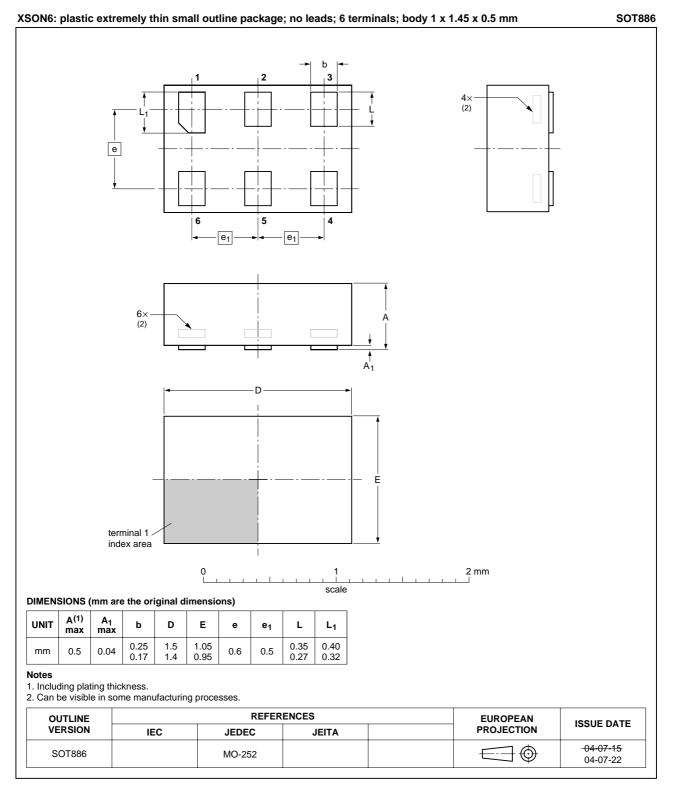
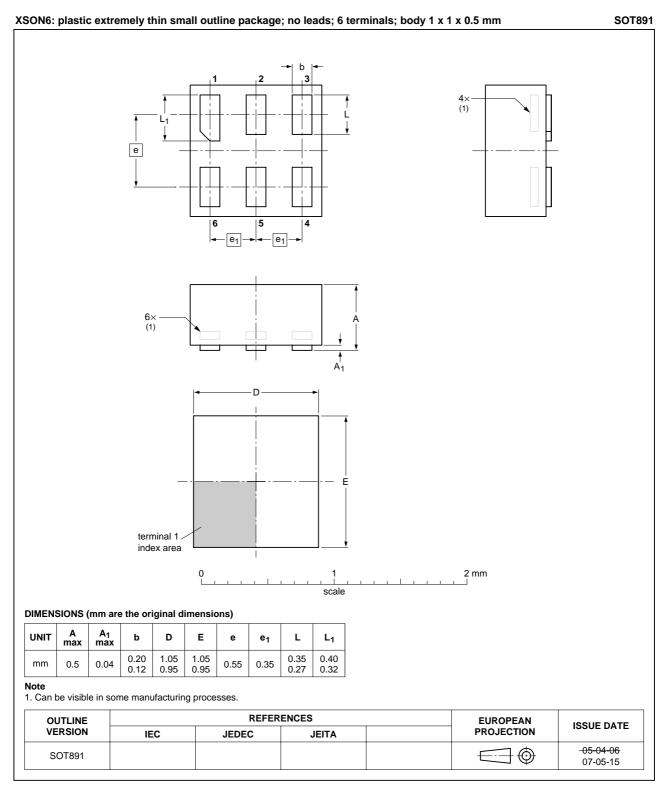



Fig 12. Package outline SOT886 (XSON6)

74AHC_AHCT1G126_7

Bus buffer/line driver; 3-state

Fig 13. Package outline SOT891 (XSON6)

74AHC_AHCT1G126_7

Product data sheet

Bus buffer/line driver; 3-state

14. Abbreviations

Table 11.	Table 11. Abbreviations		
Acronym	Description		
CMOS	Complementary Metal Oxide Semiconductor		
CDM	Charged Device Model		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		
MM	Machine Model		
TTL	Transistor-Transistor Logic		

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT1G126_7	20090617	Product data sheet	-	74AHC_AHCT1G126_6
Modifications:		OT886 and SOT891 add and <u>Section 13</u> .	ed in <u>Section 2</u> , <u>Sect</u>	ion 3, Section 4, Section 6,
74AHC_AHCT1G126_6	20070525	Product data sheet	-	74AHC_AHCT1G126_5
74AHC_AHCT1G126_5	20070514	Product data sheet	-	74AHC_AHCT1G126_4
74AHC_AHCT1G126_4	20020606	Product specification	-	74AHC_AHCT1G126_3
74AHC_AHCT1G126_3	20020215	Product specification	-	74AHC_AHCT1G126_2
74AHC_AHCT1G126_2	20010406	Product specification	-	74AHC1G_AHCT1G126_1
74AHC1G_AHCT1G126_1	19990920	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Bus buffer/line driver; 3-state

18. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Marking 2
5	Functional diagram 2
6	Pinning information 2
6.1 6.2	Pinning
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 4
10	Static characteristics 4
11	Dynamic characteristics 5
12	Waveforms 7
13	Package outline 10
14	Abbreviations 14
15	Revision history 14
16	Legal information 15
16.1	Data sheet status 15
16.2	Definitions 15
16.3	Disclaimers
16.4	Trademarks 15
17	Contact information 15
18	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 June 2009 Document identifier: 74AHC_AHCT1G126_7

